On the efficiency of selection criteria in spline regression

نویسنده

  • S. C. Kou
چکیده

This paper concerns the cubic smoothing spline approach to nonparametric regression. After first deriving sharp asymptotic formulas for the eigenvalues of the smoothing matrix, the paper uses these formulas to investigate the efficiency of different selection criteria for choosing the smoothing parameter. Special attention is paid to the generalized maximum likelihood (GML), Cp and extended exponential (EE) criteria and their marginal Bayesian interpretation. It is shown that (a) when the Bayesian model that motivates GML is true, using Cp to estimate the smoothing parameter would result in a loss of efficiency with a factor of 10/3, proving and strengthening a conjecture proposed in Stein (1990); (b) when the data indeed come from the Cp density, using GML would result in a loss of efficiency of ∞; (c) the loss of efficiency of the EE criterion is at most 1.543 when the data are sampled from its consistent density family. The paper not only studies equally spaced observations (the setting of Stein, 1990), but also investigates general sampling scheme of the design points, and shows that the efficiency results remain the same in both cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Data-driven Selection of the Spline Dimension in Penalized Spline Regression

A number of criteria exist to select the penalty in penalized spline regression, but the selection of the number of spline basis functions has received much less attention in the literature. We propose to use a maximum likelihood-based criterion to select the number of basis functions in penalized spline regression. The criterion is easy to apply and we describe its theoretical and practical pr...

متن کامل

From Finite Sample to Asymptotics: a Geometric Bridge for Selection Criteria in Spline Regression

This paper studies, under the setting of spline regression, the connection between finite-sample properties of selection criteria and their asymptotic counterparts, focusing on bridging the gap between the two. We introduce a bias-variance decomposition of the prediction error, using which it is shown that in the asymptotics the bias term dominates the variability term, providing an explanation...

متن کامل

Automatic Selection of Parameters in Spline Regression via Kullback-Leibler Information

Based on Kullback-Leibler information we propose a data-driven selector, called GAIC (c) , for choosing parameters of regression splines in nonparametric regression via a stepwise forward/backward knot placement and deletion strategy 1]. This criterion uniies the commonly used information criteria and includes the Akaike information criterion (AIC) 2] and the corrected Akaike information criter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003